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In order to see that the values of the density 11(t) given by the last formulas are actually 
the solutions of the singular Eqs.(4.12),thedirect substitution of the densities (4.13) into 
the appropriate initial equations should be performed and satisfaction of the relationships 

should actually be verified. 
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ON AN INTEGRAL EQUATION OF THE PROBLEM FOR AN ELASTIC STRIP WITH A SLIT* 

A-V, BOIKO and L.N. KARPENKO 

A new singular integral equation is obtained that describes the elastic 
equilibrium of a strip with both an inner and an edge slit (crack) and 
has a considerable advantage over existing equations /l-9/, etc.) from the 
viewpoint of a numerical realization and clarification of the analytical 
relationship with an analogous equation for a half-plane. Numerical 
results are given of a computation of the stress intensity coefficients 
at the tips of the inner and edge cracks that refine data in the literature. 

1. Let an elastic body occupy the strip O<y<H, --oC <x<X with a rectilinear 
slit along the oy axis between the points y = (1, y = b, a> O,b<H. The strip boundary is 
stress-free, while the stresses a= -p(y), 'r+u = 0 are given on the slit edges. Then the state 
of stress of the body under consideration is described /lo/ by using two regular functions of 
the complex variable z = I + iy: 

a, -I- a, = 2 I@ (2) -t ot, uy - cr, + 2ir,, = 2 Irta' (2) + Y (z)] 
that satisfy the boundary conditions on the slit edges 

d)* (iy) + QD* (iy) + tya'* (iy)- Yyf (iy) = p (y) 

and on the strip boundary 

0 (2) + Q, (5) f I@' (2) _t Y (z) = 0 

dD (~+iH)+Q,(~+iH)+(x-iH)~'(zfiH)+ 
Y(r+ iH) = 0 

(1.1) 

(1.2) 

(1.3) 

Values of the functions on the left and right edges of the slit and marked by plus and 
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minus superscripts, respectively, where the positive direction is selected from the point 
y=lJ to y = b. 

We will use a well-known method*(*Karpenko, L.N., On an approximate method of solving a 
singular integral equation and its application to a problem of plane elasticity theory for a 
domain with slots, Candidate Dissertation, Novosibirsk, 1965. Modifications of this method 
are described for example, in /8/.) to reduce the problem to a singular integral equation 
(SIE). Starting from the boundary conditions (1.2) and the symmetry of the problem, we 
introduce the following representation of the desired functions 

where the functions Cp,,Y, are regular in a continuous strip, n* (rl) are displacements of 
the slit edges in the direction of the Ox axis , and or. and x are elastic constants /lo/. 
Therefore, (p(?j)is a real function. The boundary condition (1.2) results in the relationship 

_~ 
22, (9) + % (Gf) + @cl(&) + iY@,' (iy) - Y, (iy) = p (y) (1.5) 

The boundary conditions (1.3) enable the functions (D,(z) and YY,(z)to be expressed in terms 
of the new unknown function v(n), afterwhich (1.5) becomes a SIE incp(q)whose solution should 
also satisfy the condition of single-valuedness of the displacement 

Therefore, we obtain the following boundary value problem for Q, and Yy,: 

@ll (Q + @, (1) f fQ,' (t) f Y', (t) = -I, (-it) - I, (it) f 
i(t f t)In(-it), t = I, t = Z+ iH, --a3 <r< 130 

2. We will use the Fourier transform 

to solve problem (1.7) 
We find from the boundary conditions for (1.7) 

Now we can write 

(1.6) 

(1.7) 

(3.1) 

(2.2) 
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Substituting relationships (2.1) into (1.5) we obtain the desired SIE. A number of 
authors /7-9/ obtained similar equations, nevertheless no one noted that the integrals (2.2) 
(they are represented in a different form in the papers of other authors) converge slowly, 
which does not enable acceptable accuracy to be achieved in practice in a number of cases. 
The slow convergence of these integrals is caused by the presence of components of the order 
of a--R+U)El e-('H-q-& etc. , in the integrands. Consequently, it is advisable to extract the 

components mentioned and to integrate them in finite form, which will result in the following 
expressions: 

.L (z, n) = L, (z, 11) - L, (iH - z, H - n), N (2, n) = 

N, (z. 11) - N, (iH - z, H - q) 
cc 

L, (z, 11) = +?J.!$ + S if (g, 5) e-(r*+iz): + g (I!. 5) e-(H-i+ dt 
” 

(2.3) 

4i (2 ~- i)Tj 
N,(z, q)=-& - + --J<- 12)s + 

Sq 
o'- 

((f(h), E) [I - i (2 -Z) 51 + g (q, Q) e++“L): + 
0 

{f(q. $) + [I + i(z --@El g(q, E)}e-(H-ti)E)di: 

f (117 5) = [I - eaFrE + 2H5 (2qE - $)I Y 61, E) 
B (q, j) = [(I - 2q$,)(l - e-airE + 4HaE*) - 2HEl Y (11, E) 

Substitution of the.expressions obtained into (1.5) yields the following SIE: 

b b 
1 

x s $$ dq -j- + j K (y, q) ‘P (II) dq = P(Y) 
L1 a 

12.4) 

K (Y, q) = M (Y, q) - M (H - Y, H - rl) 

M (y, ,,) = ?Ja + 4Y? - ‘1’ 
(Y +w + &WY, rlt E)dE 

II 

M, (y, q, 5) = g (q, E)[(3 - 2~s) e-(S+u)E f e-("-")~l + 
f (n, ~)[e-W+v)P f (3 + 2yf) e-(H-~)~I 

The first component in the expression for M(y,q) corresponds to a regular SIE kernel 
for the crack in a half-plane /ll/, as might have been expected. 

The condition of single-valuedness of the displacements (1.6) should be taken into 
account when solving (2.4). 

3. Formulas (1.4), (2.1) and (2.3) enable the stress distributions to be calculated by 
means of the known function m(q): 

b 

fJx= Re& 
s 
.Zq+ 3iz + if 

2 h + 4’ ‘p (rl) drl + 
a 

f j [E (z, q) - E (iH - 2, H - ?)I cp (II) drl 

+ 3 [F (z, q) - E (iH - z, H -- )I)] ‘P (11) djl 
n 

(3.1) 



4. We will consider the elastfc ~q~~l~bri~ of a strip with a central crack under 
tension by a constant stress 0, = p. applied at infinity. In this case the right-hand side 
of 12.4) is p(y) =--PO while the upper limit of integration is b=H-iL Let IH - 2ay2 = d, 
where 2E is the crack length, and h -(H - 2a)iH = 22/H. making the change of variable 

Nf = ET, q = lz + w/2, y = lz, + H/Z, --1 < 7, zg < 1 
(4.1) 

in f2.4), we transfer to integration in the segment [--1,11 

We find the kernel &(Q,T) numerically by using the Gauss-Laguerre quadrature formufa 
/12/ with 15 nodes. As a numerical experiment showed, the error here did not exceed 0.001%. 

We represent the unknown function q(r)in the form 

(U fsf is the new unknown function]. Using (4.31 we apply a Gauss-Chebyshev type quadrature 
formula /13/ to (4.2). We consequently obtain a system of linear algebraic equations in 
nr = u @i) 

The stress intensity factor (SXF) at the tip of a central recilinear crack in a strip is 
calculated as follows by using an interpalatian formula: 

where uI is the solution of system (4.4). The results of computing the d.imen!nsionIess SIF at 
the tip of a central crack in a strip stretched by a constant normal stress at infinity by 
means of f4.5) are presented below: 

h 0.1 0,3 0.5 O-7 
k&p, 1/a) 

0.9 0.95 
~.oo60 1.0577 I.1867 i.4882 2.5796 3.667 

The error in the calculations, not exceeding O,l% in all cases, was checked by comparing 
the results of calculations obtained for different accuracy of the algebraic approximation of 
the integral Eq.(4.2), which is determined by the order n of the corresponding system of linear 
algebraic Eqs.(4.4). 

To G.oO?% accuracy the results for hqE.7 agree with the data in /4I 7/. The difference 
from the results represented in /3, 8r' reaches 0.8% and ~?,6%~ xespectively in the same range 
of h. The error check performed for the calculations enables us to consider the results 
obtained as most accurate. 

The problem of an eccentrically located inner crack can be examined in the same way as 
above. 

5. We consider the elastic equilibrium of a strip with an edge crack for two kinds of 
loads of infinity: tension by a constant stress O, = pOl or bending by the moment M. In this 



case the right-hand side of (2.4) is p (y) =-pOI or p (y) =-po, (1 - 2y/H), where par = 6MI 
(dff), and d is the plate thickness which we set equal to one. 
1 is the crack length, and 

Let a=0 and b= 1, where 
h = WH. Making the change of variable 

HE = s, q = lz, y = lro, -1 <T, r0 < 1 (5.1) 
in (2.4), we transfer to integration in the segment [O,l]. We consequently obtain relation- 
ships analogous to (4.2) for the appropriate change in the limits of integration and the re- 
placement of -pO by P (TO). 

The kernel K, (rO, z) will be evaluated exactly as in Sect.4. 
We solve the SIE obtained by a numerical method /14/ which is especially effective in 

the examination of intersecting cracks or those emerging on the body boundary. To this end 
we will represent the unknown function cp(r) in the form 
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'p(r) = - pw 1/&s,(r) (5.2) 

where ~,(r)are new unknown functions (r = 1 for tension and r= 2 for bending). Although 
the factor I/=-j in representation (5.2) does not fully describe the behaviour of the 
desired function atthepoint z = 0, however as is shown in /14/, its utilization enables a 
numerical solution of the SIE of similar problems to be obtained effectively. 

We apply a quadrature formula of the semi-open type /14/. We consequently obtain a 
system of linear algebraic equations in U,j c u,(t,) 

(5.3) 

A. = L si,a fi 
Ln (j-1,2, . . . . n-l), 1 

’ n A,=z 

z,=sinag (j,=112,...,n), r,x=sin" +$-s 

(k-1,2,...,n) 

The SIF at the apex of a rectilinear edge crack located in a strip is calculated as 
follows: 

k&l@,, 1/X) = - @u,(i) (r = 1, 2) (5.4) 

The values u,(l)=:u,, for utilization of the method mentioned are determined directly 
from the solution of the system of linear algebraic equations (5.3) and not by using an 
interpolation formula of the type of the second formula in (4.5) which is an additional source 
of error. This is one oftheadvantages of this method. 

The table shows results of computing the dimensionless SIF at the apex of an edge in a 
strip subjected to a constant tensile stress POI (the upper part of the table) or a bending 
moment M (the lower part) , respectively by means of (5.4) and also the results of other 
authors. The error in the calculation was checked exactly as in the case of the central 
crack. All the calculations were performed with double precision on an ES series electronic 
computer. All the numbers presented are valid. 

Table 

Source k = c,o3 

I.14 
1,140 

I,14 
1) 13Y9 

1,07 

I,07 
I,0709 

- 
031 

I,19 
1.189 
1,189 
1,iY 
I,1892 

I,04 
1,047 
I,04 
I,0472 

1 0.3 

1,67 2,83 
1,660 2,826 
1,659 2,820 
I.66 2,83 
1.6599 2,825 

6,38 34,6 

6,340 

::ii 

I,11 1,48 2,72 12.5 
1,123 1,494 2,717 12.19 
I,13 1,50 2,73 12,4 
I.1242 I.4973 2,726 12,5 

I - 095 
- 

0.7 099 

- 

- 
0,95 

99,3 

90,cli 
102 
9Y.4 

31.26 

34,4 

It is seen that the discrepancy in the results for an edge crack obtained by different 
authors reaches 10%. The results obtained here are in good agreement with the data in /g/. 
The check performed for the calculation error enables us to regard the results obtained as 
most accurate. 
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DIFFUSION CHARGING OF PARTICLES IN 
ONE-DIMENSIONAL WEAKLY IONIZED AEROSOL FLOWS* 

G.L. SEDOVA, A.V. FILIPPOV AND L.T. CHERNYI 

Electrohydrodynamics, 6 used in /l, 2/ to study one-dimensional flows of aerosol par- 
ticles carrying a bipolar charge in electric field , in the case whenthe,parameters of the 
electrohydrodynamic (EHD) interaction between the phases are small. It is assumed that the 
radius of the aerosol particles is small and that the charging process is governed by the 
thermal motion of the ions towards their surface. The case of large Peclet numbers is con- 
sidered, the numbers constructed in accordance with the characteristic dimension of the problem, 
i.e. by neglecting the contribution of diffusion towards the total macroscopic flows of the 
ions. The reaction rate at which the ions transfer their charge to the particles, is assumed 
to be finite. A digital computer is used to study the dependence of the flow parameters on 
the reaction rate constant and the particle density. The results of the calculations are 
compared with the analytic solution of the problem obtained for low-concentration aerosols in 
the case of large electrical Reynolds numbers. 

EHD flows of weakly ionized aerosols with volume ion sources occur in various natural and 
technological processes caused, for example, by external radioactivity /l-3/. In such flows 
the particles of the disperse phase can become charged as a result of precipitation of ions 
of predominantly one sign. In order to study the special features of the interphase charge 
transfer in weakly ionized aerosols, in the presence of volume ionization, it is best to study 
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